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Received 10 October 1994

Abstract. By using representations for one-dimensional (1D} Schldmilch series, Lommel’s
expansion for Bessel functions of the first kind, and elementary series manipulations, several
algebraic formulae for two-dimensional (2p) Schidmilch series are derived. One of these
formulae contains as a special case an identity involving a certain trigonometric lattice sum
conjectured by Henkel and Weston which has recently been detived by Boersma and de
Doelder using the 2p Poisson summation formula. The latter metbod is used to give an
alternative derivation for 20 Schlémilch series. Further, it is shown that representation by
2D Schlimileh series of a null-function is not unique. In addition, representations for several
other ID type series are given.

1. Introduction

Series of the type

E a JV(n:x)

m=1 m

are called one-dimensional (1p) Schlémilch series; and a two-dimensional (2p)
Schlémilch series may be defined by

Pux)= Y S gy, 2SI ) ) (1.1)

m=1n=0 (1/;;; +ﬂ2 v
If the coefficients a,,, are functions whose arguments are linear or quadratic in the
summation indices, this sum is of a type known as a lattice sum. Such sums are irapor-
tant, for example, in the calculation of physical properties of crystal surfaces [1]. We
note that if the absolute value of the (complex) coefficients appearing respectively in
the 1D and 20 Schidmilch series are bounded by a constant, then for x>0 the 1D series
converges for Re v> — 3 and the 2D series converges for Re v>0. In addition, the 20
series converges absolutely for Re v>3 and the 1p series converges absolutely for
Re v>1.
Thus, the sums defined below are 2p Schldomilch lattice sums:

R@=§ § (Crym /D) (12)
m=1 r=0 (,/m§+n:)"

© 2 J(2x./m*+n%)
Sx)= —_— 1.3
) m2=:1 n§0 (it +n%)” (13
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®  w Jo(2x, {mz + )
T.(x)= —1)" 1.4
Oﬂ ng;zz( ) &/!n2+ff v ( )

® 2 o Jo(2x /0 + 1)
U(x)= 1) —5= L5
=k 5 ety -

where x>0 and the order v of the Bessel function is such that Re v>0. In this paper
we shall derive closed form expressions for the sums defined by equations (1.2)-(1.5)
and somewhat more general sums in terms of elementary algebraic functions.

As a byproduct of this investigation we shall be able to show in addition (in section
5) that the null-function on the open interval (0, 7/2) may be represented in two
different ways by series of the type defined by equation (1.1). In section 4, represen-
tations for several other 1D type series are given.

2. Evaluation of R, (x)

We write equation (1.2) as

R= 3 (-

m=1

+ R (%) (2.1)

where

yre Jo(2x, [+ n’)
w(X)= _ %, 2.2
R9=T E D WeETos @2)

It is well known from Lommel’s expansion for Bessel functions [2, p 140] that

J(2x/m+n?) E (—xm®Y T, 4, (2nx)
(m+rt) e t! n*

which is just a special case of the addition theorem [3, p 24] for generalized Gaussian
hypergeometric functions. Thus, using equation (2.3) together with equation (2.2) yields

R)=T (- 1)'"§ ""’") 5 -1y 2 2.4

me= 1 a=|

2.3)

where we have interchanged the second and third summations.
We shall need Nielsen’s summation formula [2, p 636, equation (4)], [4, p 678,
equation (11)] for x>0:

m v(2mx) x" + Jax" 182 20u=(1/2)
,E,( D T+ r(2+v),,,§ b= (=) @3)

where Re v> — 3 and p is a non-negative integer such that

p—t<x/n<pth. (2.6)

The series on the left side of equation (2.5) is a 1D Schlomilch series; here when
0<x<u/2, then p=0 and the second term vanishes by deﬁmt]on Thus, using equation
(2.5) together with equation (2.4) we see that for Re v> — 3, x>0
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R)= 5 -1y E( xm)

mel .

x¥E ﬁx“’—r LY v+r—(t/2)}
x{ 2F(l+v+r) TErvin S Z (F=(s—2) 7

_ ” (- xzmz) \/—x— P (5— 13220/
ZF(I'H’) Z( D .Eo(l'“’)r rG+ )SZI[ 6=2)'r
N il bl et ) 0 )
X 1
mgl ( ) z (2 + V)rl"l
where in the second term we have interchanged summations.

Since it is immediately clear that the r-summations above can be expressed as Bessel
functions J.() and J,_¢ (), the latter result may be rewritten as

R==3 § (I pye § (G TRy

mﬂl sl |
°° o Foei (203~ (5— 3)°7%)
X ZI (—1) 02 }nv_(g/z)( 2) (27)

where Re v> — 3 and p is a non-negative integer such that
p—i<x/m<p+i.

Now by applying the result for summation of the 1o Sch)émilch series in equation
(2.5) a second time to the second summation over m in equation (2.7) we have

< - - (2m x2__(s___
mél (Hl) = V‘(UZ)
(\/xz (3"“)2 z)u a2 1"(2) I R/
ML +v) o VD)
x ¥ [F- (= e = (0= ! (2.8)

rea]

where Re v>0 and g is an integer such that
g—3 <A —(s— 1V <g+3 (2.9)
Thus, combining equations (2.1), (2.7) and (2.8) yields

Rv(x)=% 2] (_l)va(::fx) r( )x-v Z [x2 (S _)2 2]v /2

r(z+v).5
- (t=3)* 2.10
l"()s.m * = (t—3)°n’] (2.10)
so that on noting once aga.ln equation (2.5) we deduce
Ry(x)= = S 3 (= by (- by (2.11)

4l +v) F(V)s=lf 1
where Re v>0, x>0.
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We note that the expression x*— (s—1)*z” in equations (2.7), (2.8) and (2.10) no
longer appears by itself in the above result so that the values of p and ¢ are determined
by means of the inequality (2.9). Thus, we have that p and g(s} are the largest integers

such that
1, /¥ 1 1, /2 Ly2
<=+, /==~ sy <=+, [ S—(s—1%
P 2 Tlf'z 4 ‘I( ) 2 }rz ( 2)
where 5=1,2, ..., p. Equation (2.11} may be rewritien more compactly as
v W=l v R4 d<axtsa? (g02 v=1
Ri(x)= oy T % (—z—sz—f‘) (2.12)
WI+Y) 27T e T

where Re v >0, x>0. This evidently completes the derivation of the algebraic represen-
tation for R.(x).

We remark that when 0<x<gx/,/2, there is no contribution from the double sum
in equations (2.11} and (2.12). This is easy to see from equation (2.12), since in this
case there are no odd integers s and ¢ such that s+ £ <2 (cf equation (5.2)).

3. A trigonometric lattice sum

In [3, p 497] Boersma and de Doelder deduced a closed form elementary formuia for
the trigonometric lattice sum

& = +n SID(20x, ;‘m§+n5)
S(x)= -1y
=) mz-:1 E‘n U .,/m§+n2

which occurs in finite-size scaling of the three-dimensional spherical model of ferro-
magnetism [6]. Since

sinz_ [ Jip(2)
z 2z

we see that

S(JC) = -\/E R|,f2()€).
Thus, setting v=1 in equation {2.12) gives for x>0

52+ 12 < 2 4 2 e
Sx=-I+2 ¥ (iz—sz—ﬁ)
2 5! odd T

which (except for a misprint) is derived in [5] by essentially employing the two-dimen-

sional Poisson summation formula. For |x] <z//2, we see that $(x)= —x/2 which
was conjectured by Henkel and Weston.
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4. Evaluation of S,.(x), T.(x), U.{x)
Define for x>0

=2 J(Zx,/m +n%)
S = 4.1
( ) mgl ngl (\.fm +H) ( )

so that

Suxn)= ¥ T+ 8(). (4.2)

m=1\

@ J(2mx)
m

The above 1D Schlomilch series for positive x is given by [4, p 678, equation (11)]

o SZmx) VEx' J—x z 2, 2y v=(1/2)
2w 2r(1+v>+2r(2+) rdaw,z, &) *3)

where Re v> — 3 and p’ is a non-negative integer such that
P<xfr<p+l. 4.4)

Since the evaluation of S.(x} is similar to that of R.(x), we only sketch the details.
Thus, by using equation (2.3) we have from equation (4.1)

® B {—xm v+r(20
5.0=5 % ) g Jrellng)
m=1r=0 n=1 R
Now substituting the expression for the (D Schldémilch series in equation {4.3) with v
replaced by v+ r into this result vields after simplification

Ju(2mx} Jy-1/2)(2mx)

S,V(x)= _5 Z 2 Z v-([/g)

m=1 " X =1

v I 2.2
+_ Z (B2 E a2 f_\/“;) n°5°) @.5)
sl m
where Re v>—% and the inequality (4.4) holds.
Next, combining equations (4.2) and (4.5) and applying equation (4.3) to the three
resulting summations with index m yields after simplification

Sv(-x) ==

v v—=2 2v—t_—v o
x T X A (ON Y
+ +

=1
- b g2
Ar(1+v) 4T(v) TI(v) EOE, T s t) “46)

where Rev>0,x>0 and p',¢'(s) are the largest integers such that p'<x/m,
gy < X/ =5 (5=0,1,..., 20, ¢(0)=p". It is easy to see that we may also write
equation (4.6)

— -t - -1
x" g x"2 gt Y S A (xz 2 z)v

WAy AT T e @ “.7)

Sv(x) ==

EZ

where Re v>0, x>0.
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Formuiae for 7,(x) and U,(x) are derived similarly; and once either T,(x) or I/,(x)
is known, then s0 is the other since it is easy to verify for positive x that

\/J_T'xv-l n_zv-(lfl)x—v

+
AE+Y) TE+Y)

7 v=(1/2) v—{1,/2)
B i) e

H= ] me=q

Uv(x) - Tv(x) =

where Re v> — 3 and p, p’ are non-negalive integers such that

p—%<x/n’<p+%

(4.9)
p<xfm<p+l.
Thus,
v—-1 v 2v~(1,/2) —
Uu) = \/?flx X = I x
4Nz +v) 4T(1+v) 2I(z+v)
r xz v=(1/2) ~ x2 v={1/2)
{8 res] 5T
m=1 L% =
n_2v—-lx—v {1 P [ } §2<xz,fx3|: ]v—l}
+ = ——(m—3 —=- 4.10
O ARG B : (19)
and by using this together with equation (4.8) gives
v—1 v 2v—(1/2) ~v
T(x)= — Jrx X T x

ATG+y) (+y) 2MGE+w

. v, v—{1/2}
£ (S| - B

n.2v—lx—v l P x_z_ . z]v—l §’2<x"‘frrz|:£_. 2]v—‘l}
Tm {2,5[ ORI I (410

where Re v>0, x>0, p, o’ are determined by the inequalities (4.9) and & is defined by
=g+t~ 1y

We observe that equations (2.12), (4.7), (4.10), (4.11) may be expressed in a unified
and more transparent form; namely for x>0, Re v>0:

v V-t ~v deladxdysnt
X i X
Rv X)=—- 4x2 ?rz_sz—tz v—1
®="iran Froy L, W )
5,7 odd
4 2vl, —v 2il<dxifnd
X T By
Sy(x)=— + 4x2 71'2".5'2'—‘2'2 v—1
e e T A )
3,feven
v Eiv-(IIZ) —v pl<dxd/nl
TUx)=— a o T A(=D)"4x mt = mhy

ara+v) 2T +v) 5

nzv—ix'l’ S dxtn? 4x2 ) S2 ) .
+I_*_ wE— =)
e 2 )

s even,f odd
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X n_zv—(lfz)x—v md<dx2ym?
+ - I Z (——1)'”(4x2/'1r2—m2)v-(”2)
41"(1 -+ V} 2 v F(E + V) meZ

EZV—Ix—v sEHrt < qndinl i,
(4x* /- — )"
2¥T(v) Zz /

Feven,t odd

Uux)=—

where Z is the set of all integers (positive, negative, zero).

Finally, we note that by using equations (2.5) and (4.3) computations similar to
those that gave R,(x) and S.(x) yield for x>0, Re v> ~ 7 and arbitrary complex f
representations for the following 1D type series:

§ (_l)mJ\'(z’x\[ ﬁ2+m2)

m=1 (\/m)v
_ 280 Nax
=7 Zﬁv +ﬁv—(lj2)

X )E' (/X = (m—3)°72)" ™2 ]y 22X = (m— z)°n”)

m=]

and

g J(2x/ B> +m’)
e (1 .’ﬁz‘f“?ﬂz)v

= _N2Bx) (1w Jeom(2Bx)
= 28" 2 ; Bv—{l,{Z)

Tx"" £ _
+’;/v——u/2) 2 (\/ xz_mznz)u (/2 Jv—n/zy(2ﬁ~ /xz—mzn'i)
nre=1
where p— 3t <x/m<p+3, p'<x/m<p'+ 1. These yield the known results for Re v> — 3

AN/ s WAL 5 BN

m=1 (\fﬁ2+m2)v zﬁv
5 A f_ﬂ2+rn_2)=_Ju(2€x) N \ﬁ TeomPn) ooy
m=s (/B +m) 25 2V=x p

which are found in [4, section 5.7.22(3), p 682] where apparently there appears the
misprint Re v>0.

5. Nuil-furctions as zp Schlémilch series

In [2, section 19.41] Watson discusses null-functions expressed as 1D Schldmilch series.
For example, from equation (2.5) for Re v> — 5, 0<x<m/2

@ Jamy) 1

,n‘g, =1 (mx)”  AT(+v)

(5.1)
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where the constant term outside the summation is regarded as the first term of the
series.
The 20 series defined by equations (1.2)-(1.5) may be regarded as generalizations

of the 10 Schlomilch series given by equations (2.5) and (4.3). From equations (2.12),
(4.7), (4.10} and (4.11) respectively we obtain for Re v> 0 the following:

© o i (26T +n) 1
-1 " = 0 2 .
mglngo( ) (x,/m +n) 4r(1+V) 0 <x<ﬂ/\/— (5 2)

E‘: °Z°: A2x. /m? +n) 1 _ er'2=
m=tas0 (X /H*+n)” 41“(1+v) 4T (v)

E i(—l)’” Ixymin), 1, ‘ﬁ,xﬂ =0 0<x<x/2 (5.3)
=t =0 (x /M +n")” 4”“‘1’) Ar(z +v)

® o ~1
T Y (-1) ,,J (2x,/mi+n ) 1 _ \/:_i:x -0 0<x<n/2. (5.4)
m=1n=0 (x /P + )" 4F(1 +v) 4Al(z+v)

Adding equations (5.3) and (5.4) vields in addition

N e PN T W
=0 0<x<m/2. 5.5
'E 'EG 2 (xS + )" 41"(1 +v) <x<u/ (53)

Guided by the 1D result equation (5.1), we see that only equations {5.2) and (5.5)
provide representations for null-functions by zp Schldmilch series, where also the con-
stant term outside the summation is regarded as the first term of the series. Thus we
deduce that representation of a null-function on the interval 0 <x<x/2 by a function
in the class &, (x) defined by equation (1.1) is not unique.

Equation (5.2) has been obtained by Allen and Pathria [7] who show in fact that
the result may be generalized to certain higher dimensional Schiomilch series. Grosjean
[8] has obtained equation (2.11) as well by using Hankel transforms.

O<x<nm

6. Alternative evaluation of 2p series

Consider the 2p Schlomilch series for x>0, Re v>0

= Z mprhang (2% /1 + 1)
RAp,. g x)= =]y N2 6.1
hain= p B O ey @D

Thus, the series defined previously by R.(x), S.(x), T.{x), U.(x) are just special cases
of R.u(p, g; x) corresponding respectively to (p, g)={(1, 1), (0, 0), (1,0), (0, 1).
The series given in equation (6.1) is related to the doubly infinite, double series

mpg Fv (2% {m% + n?)
Wip, g, x)= —1y"rrne . 6.2
Pa9= 2 2 O 62
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Indeed, by properly splitting up the summation domain Z x Z, one has

W.(p q;x)= 4Rv(p,q,x)+r —2 f (_1),,,,J.,(2mx)+2 Z( U,,,J.,(znx)
( +1) m=1
so that
R( . )—-—x—v+l ( . )
W d, X)= 4r(1+v) aw.\p,q,x
+2 Z - U”’”J me) -5 (’I)"""——Jvffx) : (6.3)
=1

The 1D Schidmilch series in equation (6.3) are known from equations (2.5) and (4.3)
for the cases p, g=1 and p, 9=0 respectively. Notice also that the 1D series cancel if
p=g, corresponding to the cases of R,(x) and S.(x).

Alternatively, the 1D Schidmilch series can be evaluated by means of the 1p Poisson
summation formula, yielding for x>0, Rev> — 3

Z, ( l)m’p v(zmx)

=1

v

X T
W+ 22T (v+1)
2k + 3?2 < dxt o2

X )3 [4x% /2% — (2k + py?)" /2, (6.4)

keZ

2v=(1/2) v

To evaluate W,(p, g; x), the 20 Poisson summation formula is employed, as in [5].
Thus, introduce the function

LR/ + P [P+ DY (x, ) #(0, 0)
t/T(v+1) (x,»)=1(0,0)

f(x,y;t)E{

and determine its 2 Fourier transform:

Uaymlf f TAUSX HP) foxvins gy g
cw (A FPY

J (21
=2xf —-(pt,—'o)Jo(m/éf2+ 7°)p dp
1]}
i=2v 2 p2_ 2wl
, 27 4é—E =)

={“" T z
0 E+ >4

2.2 42
E+ <4t (6.5)

Here the latter discontinuous integral exists for Re v>0 and may be evaluated, for
example, by using [9, section 6.574(1), (3)].

Inversion of the Fourier transform eguation {6.5) yields
fj (412_52_ n2)v—l e—ixi,‘—iyq dr.‘: dn-

gay<al

21-—2V -V

f(x,y;t)=ﬂ o)
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Hence, by setting x=m, y=n and replacing ¢ by x we obtain

Jv(lxvszrn) l 212y 2 yv=1 _=imEming
iRy 21 T H (4= e dn.

The latter representation is inserted into the series in equation (6.2} and a formal term-
by-term integration is applied, yielding

l 2v —v
W.p,q:x)= H (4x" = & — )

£+ nt<dxt

27: v
W) 2 pladst
X ¥ (—1™7e ¢ ¥y (=1 e " dé dn.
meZ nekX

Here, the two series in the integrand are rewritten by employing the 1D Poisson sum-
mation formula. Thus
T (-1yPe =2z T 8[£—(2k+p)n]

ek keZ

and
Y (-D)™e™=2x ¥ 8[n=2+g)r).

neZ leZ
Finally, on performing the required formal term-by-term integrations with regard to
the properties of the 5-function we deduce
2v—1 =V {2+ p)? + (24 + )T <dxl/x2
Wip, i) = 2 T sy [4x%/ 7% = (2K + p)* — (2 +g) ]
2 I"(V) keZ lel
where Re v>(0. Notice that this result and the 1D result given by equation (6.4) hold
generally for real p and g provided that we define (—1)" = exp(mpni),
(—1)Y"= explngri).
The corresponding resuit for R.(p, ¢; x) obtained from equation (6.3) agress with
the special cases R,(x), S\.(x), T.(x), U,(x) obtained earlier.
In concluding, we remark that different approaches to the summation of m-dimen-
sional Schldmilch series may be found in [10] via L Schwartz’s distributions and in
{111 via induction.
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